ANANDALAYA	
PERIODIC TEST -1	
Class : XII	
विद्या संवर्धि साधिका Subject: Mathematics (041)	1: 40
5	he: $1\frac{1}{2}$ Hours
	2 110 415
General Instructions: 1. The question paper consists of 22 questions divided into 3 sections A, B and C	
2. All questions are compulsory.	
3. Section A comprises of 10 questions of 1mark each.4. Section B comprises of 6 questions of 2 marks each. Internal choice has been provided in two	questions
5. Section C comprises of 6 questions of 3 marks each. Internal choice has been provided in two	-
SECTION-A 1. Given set $A = \{F, (7, 7) \text{ and a relation } P = \{(F, 5), (7, 7)\}$, which endered naiv(a) all	hauldha (1)
1 Given set $A = \{5, 6, 7\}$ and a relation $R = \{(5, 5), (6, 7), (7, 5)\}$, which ordered pair(s) shadded, so that relation R is reflexive?	hould be (1)
(A) $(6, 6)$ (B) $(7, 7)$ (C) $(5, 5), (6, 6)$ (D) $(6, 6), (7, 7)$	(4)
2 Let $f: R \to R$ be defined as $f(x) = [x]$, where [x] denotes the greatest integer, is (A) f is one - one and onto (B) f is many one and onto	(1)
(C) f is one -one but not onto (D) f is neither one -one nor onto	
³ Evaluate: $\sin^{-1}\left[\cos\left(\sin^{-1}\frac{\sqrt{3}}{2}\right)\right]$	(1)
(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{3}$	
⁴ In the interval $\frac{\pi}{2} < x < \pi$, find the value of x for which the matrix $\begin{bmatrix} 2\sin x & 3\\ 1 & 2\sin x \end{bmatrix}$ is singul	lar (1)
	iai.
(A) $\frac{\pi}{2}$ (B) $\frac{5\pi}{6}$ (C) $\frac{2\pi}{3}$ (D) $\frac{3\pi}{2}$	
⁵ The adjoint of the matrix $\begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$ is	(1)
$(A)\begin{bmatrix}3 & 1\\4 & 2\end{bmatrix} \qquad (B)\begin{bmatrix}-3 & 1\\-4 & -2\end{bmatrix} \qquad (C)\begin{bmatrix}2 & 1\\-4 & 3\end{bmatrix} \qquad (D)\begin{bmatrix}3 & 1\\-4 & 2\end{bmatrix}$	
	(1)
⁶ If $A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$, then	
(A) $AB = BA$ (B) AB is of order 2×2	
(C) BA is of order 2×2 (D) AB does not exist.	
7. Given set $A = \{a, b, c\}$. An identity relation in set A is	
(A) $R = \{(a, b), (a, c)\}$ (B) $R = \{(a, a), (b, b), (c, c)\}$	
(C) $R = \{(a, a), (b, b), (c, c), (a, c)\}$ (D) $R = \{(c, a), (b, a), (a, a)\}$	
8 Given a square matrix A of order 3×3 , such that $ A = 12$, find the value of $ A.adjA $.	(1)
(A) 144 (B) 12 (C) 1 (D) 1728	
9 The relation R on the set $A = \{0,1,2,3\}$ given by $R =$	(1)
$\{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0)(3, 3)\}$ is	
 (A) reflexive but not transitive (B) reflexive and transitive (C) reflexive, symmetric and transitive (D) symmetric and transitive 	
	(1)
Evaluate $\cos\left\{\cos\left(-\frac{1}{2}\right) + \frac{1}{6}\right\}$	(-)
(A) $\frac{1}{2}$ (B) 1 (C) 2 (D) -1	
Page 1 of 2	

SECTION-B

- If $A = \{1, 2, 3\}$ and relation $R = \{(2, 3)\}$ in A. Check whether relation R is reflexive, symmetric and 11 (2)transitive. Justify.
- A function $f: N \to N$ defined as $f(x) = 5x^2 + 3$. Show that f(x) is one- one but not onto. 12 (2)
- 13 a) If the matrix $A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$, is the square root of the 2 \times 2 identity matrix, then find the relation (2)between *a*, *b* and *c*.

OR

b) Construct a 3 × 2 matrix A, if A = $[a_{ii}]$, where

$$a_{ij} = \begin{cases} i+j, & \text{if } i \ge j \\ i-j, & \text{if } i < j \end{cases}$$

a) If the matrix $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $A^2 = kA$, then find the value of k. 14 OR

b) Find non-zero values of x satisfying the matrix equation $x \begin{bmatrix} 2x & 2 \\ 3 & y \end{bmatrix} + 2 \begin{bmatrix} 8 & 5x \\ 4 & 4y \end{bmatrix} =$

$$2\begin{bmatrix} x^2 + 8 & 24 \\ 10 & 6x \end{bmatrix}$$

If the co-ordinates of the vertices of an equilateral triangle with sides of length p are (x_1, y_1) , (2)15

$$(x_2, y_2), (x_3, y_3)$$
 then show that $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2 = \frac{3}{4}p^2$

¹⁶ If
$$A_{\alpha} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
, then show that $A_{\alpha} \cdot A_{\beta} = A_{\alpha+\beta}$.
SECTION- C (2)

17 If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, Evaluate $A^2 - 4A - 5I$. (3)

- Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a, b); a, b \in Z, and d, b\}$ (3)18 (a - b) is divisible by 5.} Prove that R is an equivalence relation. (3)
- a) Let $A = \begin{bmatrix} 3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7 \end{bmatrix}$, express A as a sum of two matrices such that one is symmetric and the other 19 is skew symmetric.

OR

b) If A and B are symmetric matrices, show that AB + BA is symmetric and AB - BA is skew symmetric.

a) Let N be the set of all natural numbers and R be a relation on $N \times N$ defined by $(a, b)R(c, d) \Leftrightarrow$ 20 (3) ad = bc for all $(a, b), (c, d) \in N \times N$. Show that R is equivalence relation.

OR

b) Show that the function $f: R \to R$ defined by $(x) = \frac{x}{x^2+1}$, for all $x \in R$, is neither one- one nor onto.

3 31

21 If
$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
, verify $A. adjA = |A|I_3$ (3)

Using matrix method, solve the following system of equations: 22 x - y + 2z = 7; 3x + 4y - 5z = -5; 2x - y + 3z = 12

(3)

(2)